

TURNING INDUSTRIAL WASTE GASES INTO VALUABLE POLYURETHANES

25 March 2021

Dr. Liv Adler, Coordinator Carbon4PUR Covestro Deutschland AG

Carbon4FUR

EUROPEAN RESEARCH COLLABORATION BETWEEN STEEL AND CHEMICAL INDUSTRY

CHALLENGES: Saving our fossil resources Reducing the greenhouse effect

Solution: Using CO₂ instead of oil

A harmful climate gas as useful raw material

CO₂ emissions hardly to be completely prevented

BUT:

CO₂ is low-energy & sluggish in reaction Using CO₂ is technically very challenging

Covestro and its partners have developed a completely new process for the ecologically and economically sensible use of CO₂

3

Scientific breakthrough via catalysis

Hurdle for CO₂ use overcome

Energy content

Challenge:

 CO₂ activation normally requires a lot of energy which is ecologically inefficient

Solution:

- Development of an appropriate catalyst and process for ecologically and economically efficient reaction
- Start at higher energy level:
 Use CO from a renewable source
- Recovered carbon by industrial symbiosis between steel & chemical industry

Conventional Steel & PUR production

Based on fossil resources and emitting CO₂

5

Conventional Steel & PUR production

Based on fossil resources and emitting CO₂

6

Carbon4PUR CO/CO₂ technology

Recycling of CO and CO₂ reduces emissions and need for fossil resources

7

Collaboration along the Value Chain

14 Partners from 7 countries, supported by the EU with 7.8 m€, 10/2017 – 03/2021

CO/CO ₂	INTERMEDIATES & POL	PRODUCTS & APPLICATION	
Steel industry	Chemical – Polyc	Polymer industry	
SteelSteel mill gasproductiontreatment	Catalyst Process design design	Upscaling	Insulation boards & Coatings
Arcelor Mittal	Ceel Cetalytic Center®		RECTICEL The paulien for comfort

8

Pieces of a big puzzle

All work packages in parallel to accelerate the overall project

9

STEEL PRODUCTION Eric de Coninck

Current situation of production

11

New situation of production = CCU

12

AM decarbonation plan:

-30% by 2030, carbon neutrality by 2050

Smart Carbon Usage

13

STEEL MILL GAS TREATMENT Mark Saeys

15

These project have received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 768919. Disclaimer: The information contained in this document has been prepared solely for the purpose of providing information about the Carbon4PUR project. The document reflects only the Carbon4PUR consortium's view and the EC is not responsible for any use that may be made of the information it contains.

ΔG_{298K}=+29 kJ/mol & ΔH_{298K}=+41 kJ/mol

16

These project have received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 768919. Disclaimer: The information contained in this document has been prepared solely for the purpose of providing information about the Carbon4PUR project. The document reflects only the Carbon4PUR consortium's view and the EC is not responsible for any use that may be made of the information it contains.

17

These project have received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 768919. Disclaimer: The information contained in this document has been prepared solely for the purpose of providing information about the Carbon4PUR project. The document reflects only the Carbon4PUR consortium's view and the EC is not responsible for any use that may be made of the information it contains.

- Demonstrated at lab scale (TRL 3).
- Swinging the solids' temperature leads to longer cycles.

- Only exists in the computer.
- Potentially requires shorter cycles at slightly lower temperatures.

18

These project have received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 768919. Disclaimer: The information contained in this document has been prepared solely for the purpose of providing information about the Carbon4PUR project. The document reflects only the Carbon4PUR consortium's view and the EC is not responsible for any use that may be made of the information it contains.

CATALYST & PROCESS DESIGN – UPSCALING

Martin Machat

Carbon4PUR process overview

Utilizing CO/CO₂-containing steel mill gas for selective chemical transformations

> Four different process scenarios determined for in-depth TEA and LCA analysis

20

CO₂ and CO conversion technologies

Combining two technologies of different technological readiness levels

Carbon4PUR: Development of an emerging academic technology towards technological readiness for industrial use

21

industrial technology towards the use of CO₂containing gas mixtures instead of pure CO₂

Upscaling of the CO-polyol production

Parallel development to speed up the innovation process

10/2018

Polyol development with carbonylated "CO-intermediate"

g-scale carbonylation

kg-scale carbonylation

CO-intermediate

CO-containing polyol and rigid foam

Polyol development with commercially obtained "CO-intermediate"

g-scale polyol synthesis

kg-scale polyol synthesis

pilot plant polyol synthesis

Delivered to

22

INSULATION BOARDS Geert Snellings

Thermal insulation based on rigid polyurethane foams:

- **Polyurethanes** (PUR or PIR) are the most efficient thermal insulation materials with **lowest thermal conductivity**, leading to thinner applications
- Thermal insulation solutions for building renovations and new construction make a significant **contribution to a low-carbon society**:
 - In 2020, CO₂ emissions avoided by our insulation solutions offset more than 46 times the carbon footprint of all Recticel activities combined
 - Structurally growing market for thermal insulation in Europe
 - Driven by the EU regulation aiming to save energy and reduce CO₂ emissions
- R&D focus on **sustainable innovations** uncovering new solutions for the **circular economy**, including **more lower-carbon raw materials**

24

25

How are polyurethane foams made?

26

How are polyurethane foams made?

27

How are polyurethane foams made?

28

Thermal insulation boards based on polyurethane rigid foams:

- 1 Carbon4PUR polyol selected to do further formulation adaptations on small scale (lab) first in order to overcome processing issues and to obtain required properties, such as thermal conductivity
 - Finally up to 70 parts of reference polyol could be replaced in the formulation!
- Transfer from handmix to semi-industrial scale to produce flex faced insulation boards:

29

Thermal insulation boards based on polyurethane rigid foams:

		Carbon4F	PUR polyol	
Sample Property	Reference	60%	70%	
Compressive strength				
Tensile strength				
Dimensional stability				
Under extreme conditions				
Flammability				
Thermal conductivity				
Normality				
Water absorption				THE O

: slightly worse than reference but still within specifications

Final result = pilot scale rigid foam fulfilling rigid foam specifications partially made with polyols based on the **Carbon4PUR** technology.

30

WATERBORNE PUDs FOR COATINGS Poppy Krassa

Market Potential of PUDs

- European PUDs market expected to reach
 ~USD 7 bn by the end of 2030. Increasing penetration in paints and coatings.
- Steady shift to waterborne PUDs due to environmental considerations.
- PUDs meet low-carbon economy and environmental protection requirements.
- Growing demand from industries such as furniture, automotive and wood flooring coatings.
- Potential challenges include the higher cost compared to acrylic emulsions and of new green polyols.

https://www.transparencymarketresearch.com/europe-polyurethane-dispersions-market.html

32

Polyurethane dispersions (PUDs)

33

The transition from lab to pilot and semi-industrial scale

34

Comparison of Carbon4PUR PUDs vs benchmark dispersions

Ţ	ype of Polyol	Film Hardness	Scratch Resistance	Chemical Resistance	Cross-cut adhesion	Blocking Resistance
Benchmark	Polyether	5B	1	2	5	5
	Polycarbonate	5B	4	4	5	5
Carbon4PUR	CO ₂ -polyol	5B	2	2	5	5
	CO-based polyol	5B	2	3	5	5

Very good application characteristics:

- 🗸 Rapid hardness development & High substrate coverage
- Good chemical and stain resistance
- 🗸 Low to medium scratch resistance
- High thermal stability / low yellowing & storage stability (> 6 months)
- S Excellent cross-cut adhesion & blocking resistance
- C Excellent high gloss potential and gloss retention
- Technical characteristics close to the market standards in the wood application area
 Low VOC
 - Improved environmental profile compared to traditional fossil-based PUD coatings

35

INDUSTRIAL SYMBIOSIS ANALYSIS Arturo Castillo

Explore further CO/CO₂ reuse

Public sector; Investors & project developers; Industrial parks; Researchers

Available at: <u>https://www.carbon4pur.eu/public-documents/mapping-tool/</u>

37

Identify options

Providing geographical data and guidance

- I. Define emissions and uptake preconditions (*Hard criteria*)
- II. Locate potential sites
- III. Assess regional conditions, e.g. funding and support institutions (*Semi-hard criteria*)
- IV. Assess non-technical, non-regulatory parameters e.g. acceptance (Soft criteria)

38

Example: Explore steel mills

Sources, radius, uptake, prepare for due diligence

39

INDUSTRIAL SYMBIOSIS ANALYSIS Sylvain Pichon

Pathways scenario studied, managing flexibility and complexity ...

ISSUES TO OPTIMIZE:

- Legal
- Technical
- Envrionmental
- Economic
- Symbiosis

41

Pathways comparison

Pathways	Pathway 1 (direct)	Pathway 2 (North & under the dock)	Pathway 3 (North & SNCF bridge)	Pathway 4 (East)
Advantages	 Shortest pathway Possible synergy: passing other pipes under the dock 	 Existing pipeline corridor Middle length pathway 	 Existing pipeline corridor Middle length pathway 	 Existing pipeline corridor Few environmental issues Few technical constraints Possible synergy with Air Liquide
Disadvantages	 Technical issues: dock No existing pipeline corridor High price/km 	 Local urban plan: prohibition to lay pipelines Environmental issue zone: wetland Security distance with gas pipe Uncertainty about the planning & administrative authorizations & costs 	 Local urban plan: prohibition to lay pipelines Environmental issue zone: wetland SNCF Bridge: Impossible to put the pipe on the bridge and no more space under 8. 4 selected	 Longest pathway Costs

42

Marseille-Fos: C and CO_2 issues industrial symbiosis for value creation ...

- Environmental and social acceptability
- Sustainability issues for established industries
- Attractiveness challenges of the port
- Exemplarity, image and international influence

... The port of Marseille is involved in projects directly related to the capture, recovery and CO_2 storage :

Jupiter 1000, Carbon4PUR, VASCO, Southern Lights, GREEN IMPACTS (Green Deal call response), ...

... and looks forwards to NEW industrial symbiosis opportunities:

Bio chemicals, conversion into methanol, etc. ...

> 10MT of CO₂/y

43

ECONOMIC ANALYSIS Jason Collis

Techno-economic assessment of novel process

Structure of a TEA

45

Scenarios Analysed

46

Cost of goods manufactured Production cost

47

Net Present Value

48

LIFE-CYCLE-ASSESSMENT

Jeroen Guinee

Life cycle assessment in a nutshell

• Assessment of the environmental impacts of a product *system* over its entire *life cycle*

50

LCA: systems compared

BASELINE SYSTEM

* Grey parts are excluded as they are the same for both systems ** quantity of BFG used for polyols production CARBON4PUR

* Assuming polyols store the same amount of C

51

Savings for each scenario

Scenario 3 results for selected impacts

TAKE AWAY MESSAGES¹

based on today's knowledge –

- Scenario 3 most promising
- Estimated impact reductions between 5 - 15 % for most impact categories
 - up to 10% for climate change by integrating just up to 20 % CO/CO_2
- Results represent a low TRL
 - higher TRLs may show better environmental performance when integrating higher CO/CO_2 levels
 - however, filling data gaps may ٠ also lower expectations

These project have received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 768919. Disclaimer: The information contained in this document has been prepared solely for the purpose of providing information about the Carbon4PUR project. The document reflects only the Carbon4PUR consortium's view and the EC is not responsible for any use that may be made of the information it contains.

53

ACCEPTANCE Lisanne Simons

What did we set out to do?

Understanding the acceptance of CCU insulation boards

55

How did we approach this goal?

56

What did we find?

The acceptance of CCU insulation boards

57

What did we find?

The acceptance of CCU insulation boards

German (n = 331) Outch (n = 312)

Want to learn more about acceptance research?

Visit our YouTube channel

Chair for communication science, RWTH Aachen university

59

SOCIAL ANALYSIS

Francisco Koch

Current policy and regulatory framework

Does it support Carbon4PUR's upscaling?

- Strong policy push (European Green Deal) to support CCU
 - ✓ CO₂ mitigation
 - ✓ Resource efficiency
- Planned regulatory actions to stimulate demand for CCU derived products as part of the Circular Economy Action Plan

Greater regulatory framework **alignment** with EU Green Deal objectives still needed:

- Fit for purpose: Storing CO₂ underground (CCS) and using CO₂ to produce a more sustainable product (CCU) are not the same. Regulatory framework needs to reflect this
- Two key regulatory hot spots
 - Monetising CO₂ emissions avoided
 - Transport infrastructure development

61

Policy and regulatory hotspots

Monetising CO₂ avoided to stimulated investment in CCU

 Large industrial, hard to abate emitters could reduce their CO₂ emissions by using CO₂/CO to produce chemicals instead of using fossil-based feedstocks

- But ... still must pay for the CO₂ as if it had been emitted
- EU ETS does have the GHG accounting tools needed to address key issues

62

Policy and regulatory hotspots

Enabling transport infrastructure

Current regulatory framework still too CCS centered

- CCS directive: large CO₂ transport infrastructure for underground geo storage – not for use as a chemical feedstock.
- TEN-E: address barriers that slow / prevent the development of EU wide energy transport infrastructures (CCS included), including:
 - complex and time-consuming permitting process to build pipelines and
 - delays caused by lack of public acceptance, amongst others.

Permitting often poses a problem

- Need to narrow the CCU awareness gap within Europe:
- General public, NGOs, local Govt
- CO₂ and CO can be transported in a safe manner, despite CO being both flammable and toxic
- Building on experience and communicating in a transparent manner
- Targeted, structured and systematic approach to dispel HSE concerns and "sell" CCU is warranted
- Collaborative effort supported by the EC as an European Green Deal policy goal enabler

63

Is it all worthy?

Carbon4PUR offers a "social return on investment"

- Job preservation at industrial installations
- Employment in innovative industrial CCU/ symbiosis (100 +), that:
 - converts CO₂/CO into high value chemicals (polyols)
 - ✓ avoids CO₂ emissions (10%)
 - saves natural resources + reduces associated environmental / biological impact (up to 20%)
- Leverages additional investment (approx. EUR 5 MM/ EUR 1 MM invested)
- Enables technology transfer within Europe, through partnerships, research and investments.
- Position the EU as a front runner in innovative CCU technology

() = Estimated impact at FOS

Genuinely more

64

After 3.5 years most Puzzle Pieces are linked

65

After 3.5 years most Puzzle Pieces are linked

- Selective combustion developed from TRL2→6 and tested with BFG at steel plant in Gent
- 90% CO possible from BFG by new gas technology pressure swing chemical looping
- Potential industrial symbiosis investigated by engineering study in Marseille-Fos

After 3.5 years most Puzzle Pieces are linked

- Proof of principle of CO- & CO₂-based polyol-production with mixed gases at lab scale
- 14% of CO₂ or 27% of CO bound in polyol (supporting EC resource efficiency goals)
- Proof of principle of CO-based rigid foam
- Production of polyols based on comm. intermediate upscaled to 400 kg: TRL3→6

67

After 3.5 years most Puzzle Pieces are linked

- New polyols successfully implemented on a semi-industrial scale in rigid foams for insulation boards and in waterborne polyurethane dispersions for wood coatings
- LCA showed 10% environmental impact reductions for most environmental indicators
- Reductions of up to 90 kt/a CO₂-eq. per 150 kt/a polyol produced possible

These project have received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 768919. Disclaimer: The information contained in this document has been prepared solely for the purpose of providing information about the Carbon4PUR project. The document reflects only the Carbon4PUR consortium's view and the EC is not responsible for any use that may be made of the information it contains.

68

After 3.5 years most Puzzle Pieces are linked

- Techno-economic assessment showed lowest production costs for holistic process producing CO₂-based PC and CO-based PES in parallel with increasing CO content
- Further development on sustainable CO needed
- Acceptance study revealed that a generally positive attitude emerges, when end-users receive information on CCU → Raise awareness of new technologies

69

After 3.5 years most Puzzle Pieces are linked

- Social Return on Investment (Fos, France): 100+ employed, and
- High investment leverage potential: EUR 5M / EUR 1M invested
- Carbon4PUR contributes to EU Green Deal climate and resource efficiency & transition to circular economy goals
- Current regulatory framework does not incentivise the replication of CCU technology

70

3.5 Years of Carbon4PUR – Thank you!

Website www.carbon4pur.eu

Follow @carbon4pur on Twitter and LinkedIn

