

Sustainability @ Covestro

Dr. Christian Haessler Global Sustainability

covestro.com

covestro

Our future is being collectively shaped

Pathway forward

Contribute to UN Sustainable Development Goals Ensure future economic growth Enhance durability of products

... while

reducing CO_2 emissions in production and over the lifetime of products increasing energy efficiency improving use of resources (carbon) along the value chain

Our purpose

Covestro Strategy

Investments

Strengthen core business: allow for growth and build competences

Innovations

Focus on sustainability: align research & development with the UN Sustainable Development Goals

Acquisitions

M&A as value driver: systematic additions to our portfolio in line with megatrends

Growth through

check and utilize

potentials to improve

long-term performance

efficiency:

Digitalization

Set digital standards: use digitalization holistically for growth and efficiency

Culture

Curious, courageous, colorful: further develop our common culture to unlock the full potential of all our people

ns Efficiency

Covestro sustainability goals 2025 Aligned with UN SDGs

March 19 Sustainability@Covestro Haessler

Covestro's approach Full life-cycle thinking

cardyon® A brighter use of CO₂

#PushingBoundaries #CO2Dreams

From pollutant to raw material

- Covestro is integrating CO₂ into the production chain
- dream production: CO₂ as raw material for polyols

covestro

technical and commercial viability of CO₂-containing PU foam proven in two-year test phase

Covestro's experience in carbon productivity

A timeline for R&D and investments

Economic and societal drivers towards enhanced circularity

Plastics in the ocean & on landfill

Digitalization & improved waste mgt

Brand marketing & consumer behavior

It must become an opportunity for Covestro. And it will...

Finite growth potential from virgin feedstock will drive economies in recycling volumes

1 Actual growth after demand reduction, assuming global GDP growth of 3.1% (IHS)

2 IHS forecast, demand if current IHS projections until 2027 for plastic growth continue through to 2050

3 Mechanical recycling limited by downcycling and applicable materials, monomerization limited by applicability to condensates only, pyrolysis limited by likely rise in input costs

4 We modeled 3 different scenarios in addition to BAU, with Coalition for Change (CfC) being the most ambitious one with the most drastic global change in plastics recovery rate and waste mgmt SOURCE: McKinsey plastic waste stream model

Pushing boundaries further Striving for a broad use of CO₂

Our vision

- Use of CO₂ in as many different types of plastics as possible
- Replace as much fossil raw material as possible with CO₂

The right way

- To broaden the plastic industry's raw material base
- To promote circular economy

Thank you for your attention