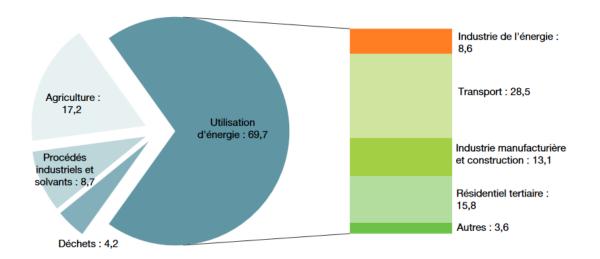
CO₂ emissions reduction in industries with CCU technologies ?

Aïcha EL KHAMLICHI Industries Department ADEME Email: aicha.elkhamlichi@ademe.fr

> Carbon4Pur Conference 20 March 2019

ADEME

Agence de l'Environnement et de la Maîtrise de l'Energie


CO₂ emissions

In 2015, CO_2 emissions from fossil fuel combustion and industry reached 35.7±2 Gt CO_2 , +60% since 1990. Stable emissions between 2014 and 2016

In 2017, emissions have increased at 36.8 ± 2.0 Gt CO₂ (Source: Global Carbon Project)

RÉPARTITION PAR SOURCE DES ÉMISSIONS DE GES (HORS UTCF) EN FRANCE EN 2014

En %

Example of emission for industries at European level: - cement sector: around 14% of CO₂ emissions in Europe = 130 Mt_{CO2}

- steel sector: around 20% of CO_2 emissions in Europe = 191 Mt_{CO2}

Key challenges for industries

- CO₂ emissions reduction:
 Energy efficiency
 Switch to renewable energy
 - Switch to renewable energy
 - >New process (through breakthrough technologies)
 - >CCS/CCU for residual emissions

• CO₂ Utilization in the global mitigation initiatives and efforts:

➤ Current Utilization:

ADEME

Agence de l'Environnement

et de la Maîtrise de l'Energie

180 Mt CO₂(mainly for urea and inorganic carbonates manufacture) (Source: Armstrong & Styring, 2015)

- + 70 Mt CO₂ for EOR (Source: CO₂ Utilization Summit, San Antonio, 2015)
- = 250 Mt CO₂/yr utilization (0.7% 2015's emissions) could be used
- ➢ If business models are relevant and regulations are in place: max 2 to 4% overall emissions could be utilized (eg: C1-building blocks, mineral carbonation...) → It is a way to deploy circular economy based on a robust industrial sector and infrastructure.
- It will act as a complement to other solutions (storage, efficiency, renewable energies,...) with a potential that should be carefully assessed.

Policy background

European Climat- Energy Policy:

Target 4 for France: 75% of GHG emissions reduction by 2050

National policy:

ADEME

Agence de l'Environnement et de la Maîtrise de l'Energie

- Energy Transition Law for Green Growth,
- Circular Economy Roadmap

International level- After Paris agreement:

Revision of National Low Carbon Strategy to reach « carbon neutrality » ADEME

Key actors at policy level

• DGEC: French Energy ministry : member of Mission Innovation –Challenge 3 -CCUS

• MESR: French Research ministry via participation to:

new call of ERANET ACT (CCS and CCU)

Initiative Phoenix on CCU (Germany, Netherlands, France and Flanders):

Main goal of PHOENIX is to build a business case with respect to CO_2 utilisation to ensure an optimal use of public funding and private investment.

 National agencies: ANR (French Research Agency), ADEME (Environment and Energy Management agency) -> funding CCU projects via specific R&D program or generic program (energy or circular economy)

 Club CO₂ is a forum for exchanges of information and initiatives concerning CO₂ capture, transport, underground storage and re-use (CCUS) between industrial, research and local government players in France -> WG CO₂ Utilisation

ADEME

Agence de l'Environnement et de la Maîtrise de l'Energie

Website: http://www.captage-stockage-valorisation-co2.fr/

Overview on CO₂ Capture & Utilization

Carbon4Pur Conference 20 March 2019

AGENDA

- 1. Brief review of CO₂ Utilization technologies
- 2. Actions of Club CO₂'s French CO₂ Utilization Working Group
- Lessons learnt from the "International Overview of CCU Symposium" (Paris, France, July 2nd 2018)
- 4. Final Conclusions of the Symposium

BRIEF REVIEW OF CO₂ UTILIZATION TECHNOLOGIES

Definitions

CO₂ Utilization:

- Genuine utilization of CO₂, diluted, partially concentrated or highly purified, depending on the utilization processes
- Based on **physical**, **chemical** or **biological** processes

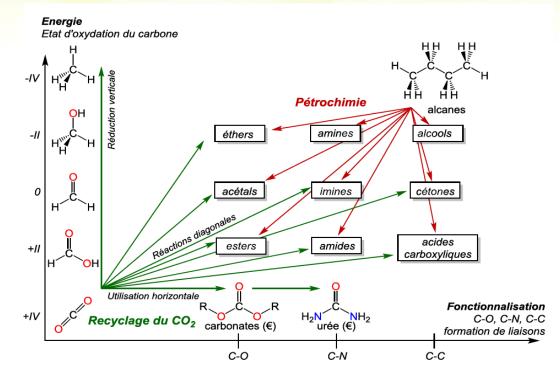
CO₂ Valorization: giving added-values to the Utilization (a step forward):

- CO₂ Valorization addresses the three pillars of **Sustainable Development**.
- An environmental value: by avoiding CO₂ emissions, limiting fossil fuel and raw materials requirements and improving the carbon footprint of products,
- An economic value with strong and reliable business models. Could be a way to deploy circular economy.
- A societal value, by protecting human health (mitigation of CO₂ emissions and other pollutants) and developing employment.

BRIEF REVIEW OF CO₂ UTILIZATION TECHNOLOGIES

Processes

Physical CO₂ Utilization routes:


- EOR, EGR, CO₂-Fracturing for Hydrocarbon Recovery,
- CO₂-Assisted geothermal (cf. "Task Force on Utilization Options for CO2: Phase 2 Report")

(Mineral and Organic) Chemical CO₂ Utilization routes:

- Reduction of C,
- Functionalization,
- Mix reduction/functionnalization (« diagonal approach ») with catalysts

Biological CO₂ Utilization routes:

Utilization of organisms to convert CO_2 into chemicals (microalgae, bacteria,...)

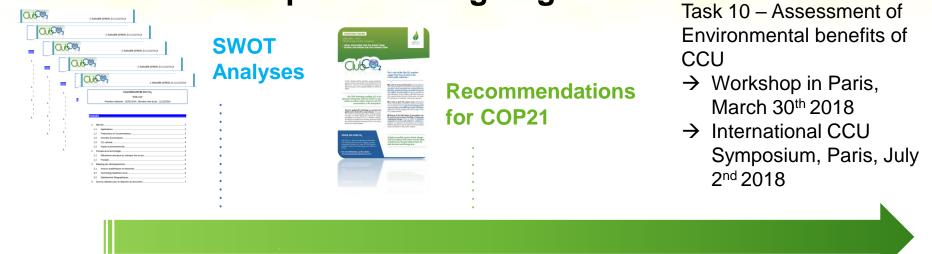

Source : Blondiaux, "Recyclage du CO_2 : une alternative à la pétrochimie pour la synthèse de molécules azotées", 2015

Adapted from Cantat et al., "A Diagonal Approach to Chemical Recycling of Carbon Dioxide: Organocatalytic Transformation for the Reductive Functionalization of CO_2 ", Angew. Chem. Int. Ed. 2012, 51, 187–190

The CCUS value chain: an efficient solution to reduce emission for the carbon-intensive industry

180 Mt_{CO2} are used today for manufactured products (mainly for urea and inorganic carbonates)

Paving the way — A selection of today's carbon capture and utilization pathways


Focus on:

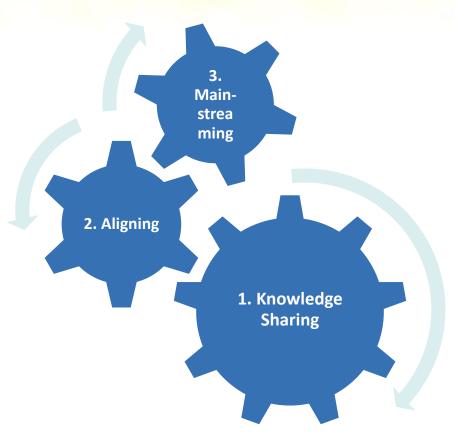
- Potential of CO₂ emission reduction taking into account the entire lifecycle
- Scale of the technologies and maturity
- Market size

ACTIONS OF CLUB CO₂'S FRENCH CO₂ UTILIZATION WORKING GROUP

11 actions completed or ongoing:

CO₂ Util^{on} Workshops (2015, 2016)

- Mapping of French Stakeholders
 - Brochure of labs activities


Task 9 – Video on CCU → On-going

ACTIONS OF CLUB CO₂'S FRENCH CO₂ UTILIZATION WORKING GROUP

Stakeholders and Objectives:

- Working Group of Club CO₂
- 24 members: industries (Majors and SMEs), public bodies (national and regional-level), public research
- Started in 2013
- Objective:
 - Sharing on CO₂ utilization technologies and their potential
 - Aligning on key learnings
 - Mainstreaming recommendations on CO₂
 Valorisation for France

Facts & Figures

- Paris, July 2nd 2018; 150 attendees ; Symposium held before ISO TC/265 Paris' meeting
- Introduction:
 - European context and regulatory framework: Implications for research and innovation, EC-DG RTD
 - Potential global market of CCU, Global CO₂ Initiative
- 1 plenary session with a review per country of:
 - Policies in terms of GES emissions reduction targets
 - Actors in CCUS
 - Key projects
 - Misc. Topics: international initiatives, questions,...
 - 11 pays presented: Australie, South Korea, China, India (not presented but slide deck available),
 Germany, The Netherlands, Norway, France, UK, Mexico (webex), Canada
- Conclusions by IEA

Facts & Figures

- Status of LCA guidelines for CCU:
 - EU-Methodology for quantifying GHG for fuels from CCU (JRC)
 - US-LCA Guidelines for CCU (NETL, webex)
 - International-LCA guidelines from CO2 Global Initiative (Aachen University)
- **1** Workshop session:
 - 4 teams working on LCA barriers for CO₂-to-fuels, chemicals, mineralization, bioconversion
 - 1 team working on standardization
- More : Zone poster of French CCU projects + Brochure of French labs working on CO₂ utilization
- 88% of attendees satisfied or very satisfied by the symposium

Country	Key fact / project about CCU
Australia	Actors: Mineral Carbonation International Pty Ltd (MCi), a joint venture between the Greenmag Group, Newcastle University and Orica. Status: built and commissioned a batch plant and a semi continuous plant at the University of Newcastle
South Korea	 Korea CCUS Program (2011-2020): 51 projects; 151 MUS\$; 22% allocated to CCU for chemical and biological conversion National Strategic Project for Carbonization (2017~2022, 42 MUS\$): Carbon Conversion Flagship : Technology for separating and utilizing the C₁ gas of industrial by-product gas (US\$ 23M) Carbon Mineralization Flagship: directly utilizing low-concentration CO₂ emitted from a power plant to abandoned mine fillings (US\$ 19M)

Reco #1	Improve the definition of the "Goal and Scope" (System boundaries, function, functional unit). Application and local market should be identified in a first step to serve as basis for LCA.
Reco #2	Use LCA for screening and optimizing new CCU technologies at an early stage (even at lab
	scale). It should not be the final analysis to perform after technology development at TRL9.
Reco #3	Consider two different references for the reference scenario (to be compared with the CCU-
	scenario):
	The current, most available process/technology,
	An environmentally competitive solution even if it's currently not economically viable.
Reco #4	Make available more specific & reliable data, eg CO ₂ captured, data of CO ₂ utilization
	processes, hydrogen,
Reco #5	A LCA is a multicriteria analysis to identify environmental burden transfer. Therefore, the global warming potential (GWP) should not be the only environmental impact assessed.
	The most relevant environmental impacts should also be assessed (eg: land use, human toxicity, resource depletion, etc.). This assessment will be communicated to the scientific community.
	Specifically regarding CO_2 , there is a need to figure out: 1. The amount of CO_2 utilized into the process 2. The amount of CO_2 avoided into the process 3. The GWP (considering upstream).

Reco #6	If it is decided to aggregate the impacts:
	 An aggregation method of impacts should be agreed upon Or, at least, a list of methodologies of aggregation should be clearly presented and
	defined
	This assessment will be used by policy makers to decide between technologies.
Reco #7	If system expansion is not considered, allocation of impacts should be done over the whole value chain from the CO ₂ emitter to the actor using CO ₂ : there is a need to define economic value creation/penalty and environmental benefits/burdens, and to share these values.
	Make integrated assessments (economic and environmental) even for low-TRL technologies.
Reco #8	Make ISO technical prescriptions of processes, properties and performances of products.
Reco #9	Harmonized LCA guidelines for CCU processes through ISO standard should be define to address the main pitfalls (eg definition of FU, goal and scope,).
	Technical prescriptions and standards may help to create a label for CO ₂ -based products/services.

- CCUS plays a key role in achieving global climate targets: 15% to achieve 2°C, 32% to be below 2°C.
- The amount of CO₂ utilised and geologically stored is limited compared to global anthropogenic CO₂ emissions.
- CO₂ utilization is a subject for many countries linked to climate policies; most of them plan to support research and demonstration projects in order to encourage new technologies and to improve their performances
- Eg : EU involvments:

Horizon H2020 (240 M€ EU contribution), Horizon Europe (35G€ for tackling climate change)
 Inputs of SAM (EC Scientific Advisory Mechanism) based on existing research on the climate mitigation potential of CCU technologies
 ERANET ACT CCUS : international initiative to facilitate innovation, coordinated by Norway
 Initiative Phoenix on CCU: main goal is to link national and European RD&I activities
 ECCSEL gathers world-class research infrastructure in Europe for developing CCS technologies.
 Mission Innovation

- No CO₂ utilisation options are available today that meet the 3 criteria proposed by IEA (emission reduction, economic viability, market)
- However, according to Global CO₂ Initiative, market insights are promising:
 - By 2030 potential to utilize over 6 billion metric tons of CO₂ per year / generate \$1US trillion/year.
 - Significant progress towards scalable technologies is needed.
 - Building materials, chemical intermediaries, fuels and polymers represent the biggest markets.
- CO₂ utilization addresses political and public acceptance drawbacks of CCS.
- Technologies of utilization and storage must be developed and deployed in parallel and not opposed.

Thank you for your attention