

EXPECTED RESULTS

- Demonstration of an adjustable process for on-purpose and on-demand tailor-made production of high value polymers, taking into account all variables at the same time:
 - Steel plant flue gases characteristics
 - Material and process parameters
 - End product market requirements
 - Full value chain
- Small piloting of the new process (20 t/y)

HOW TO ENGAGE

- Participate in one of the stakeholder events to get updated information on the project status, voice your opinion or see how you could become involved.
- Become one of the assessed industrial sites for replication and be involved in the feasibility studies and knowledge transfer.

CONSORTIUM

Covestro covestro.com Recticel recticelinsulation.be Megara Resins megararesins.com Universiteit Gent lct.ugent.be Universiteit Leiden universiteitleiden.nl DECHEMA dechema.de **TU Berlin** reaction-engineering.tu-berlin.de CEA cea.fr ArcelorMittal Mazieres Research arcelormittal.com South Pole southpole.com Grand Port Maritime de Marseille marseille-port.fr **RWTH** Aachen catalyticcenter.rwth-aachen.de avt.rwth-aachen.de **PNO Consultants** pnoconsultants.com Imperial College of Science,

Technology and Medicine

imperial.ac.uk

This project received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 768919

Disclaimer note: The European Commission is neither responsible nor liable for any written content on this flyer.

Turning industrial waste gases (mixed CO/CO₂ streams) into intermediates for polyurethane for rigid foams/building insulation and coatings

www.carbon4pur.eu

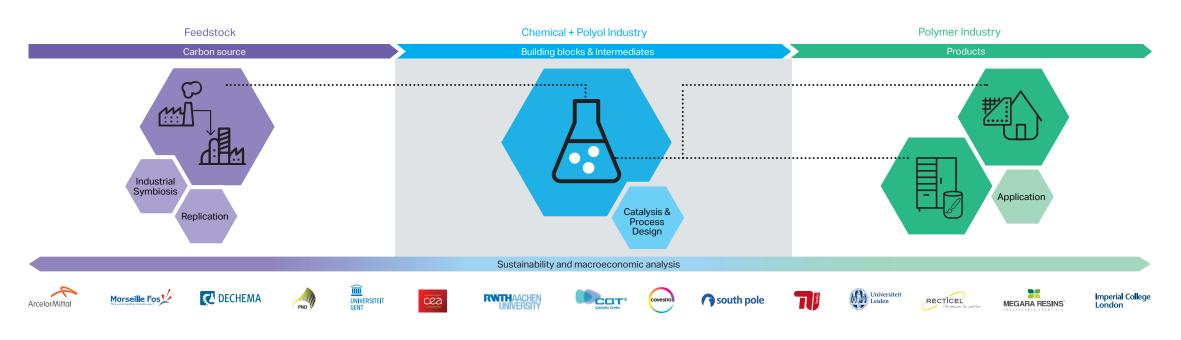
CONTACT

Dr. Liv Adler (Project Coordinator) man.carbon4PUR@covestro.com

Arjen van Kampen (Exploitation manager) arjen.vankampen@pnoconsultants.com

ABOUT Carbon4PUR

The Carbon4PUR project explores industrial symbiosis between steel and chemical industry to produce polymer foams and coatings from steel off-gases.


Flue gases from steel manufacturing contain a mixture of carbon dioxide and carbon monoxide, valuable feedstock gases for chemical production. The ambition of Carbon4PUR, a 7.8 Mill. Euro Horizon2020 project with 14 partners from 7 countries, is to manufacture high value polyurethane materials from these flue gases.

The unique Carbon4PUR technology will valorise steel off-gas without previous cleaning or separation of the gas components.

OBJECTIVES

- Develop and demonstrate (TRL 4-6) an economically viable technology to transform the carbon from a steel industry waste gas into "ready to use"
 C1 building blocks for the production of high value intermediates.
- Provide chemicals and building blocks for the production of new, sustainable polyurethane (short: PUR) applications (rigid foam and coatings) as an example of high value polymers a novelty for waste CO/CO₂.
- Implement a direct conversion of mixed flue gases containing both CO and CO₂: Avoid expensive "traditional" purification and conditioning methods.
 Mixed flue gases are provided by many industries, the Carbon4PUR project sets its focus on CO rich flue gases from the steel industry.

- Reduce the carbon footprint of PUR intermediates by 20-60 % compared to today's PUR products manufactured from crude oil due to the re-utilisation of anthropogenic CO and CO₂. With Carbon4PUR, the polyol producing industry will be able to reduce up to 15-36 % of petrochemical epoxy compounds and 70 % of process energy.
- Demonstrate the economic feasibility, the environmental impact and social benefits by an LCA and further assessments.
- Prepare Industrial Symbiosis between consortium partners in the Port Maritime de Fos (France).
- Exploit and transfer project results to key stakeholders and additional EU industries.

